Covalency in resonance-assisted halogen bonds demonstrated with cooperativity in N-halo-guanine quartets.

نویسندگان

  • Lando P Wolters
  • Nicole W G Smits
  • Célia Fonseca Guerra
چکیده

Halogen bonds are shown to possess the same characteristics as hydrogen bonds: charge transfer, resonance assistance and cooperativity. This follows from the computational analyses of the structure and bonding in N-halo-base pairs and quartets. The objective was to achieve an understanding of the nature of resonance-assisted halogen bonds (RAXB): how they resemble or differ from the better understood resonance-assisted hydrogen bonds (RAHB) in DNA. We present an accurate physical model of the RAXB based on the molecular orbital theory, which is derived from the corresponding energy decomposition analyses and study of the charge distribution. We show that the RAXB arise from classical electrostatic interaction and also receive strengthening from donor-acceptor interactions within the σ-electron system. Similar to RAHB, there is also a small stabilization by π-electron delocalization. This resemblance leads to prove cooperativity in N-halo-guanine quartets, which originates from the charge separation that occurs with donor-acceptor orbital interactions in the σ-electron system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets.

We show that the cooperative reinforcement between hydrogen bonds in guanine quartets is not caused by resonance-assisted hydrogen bonding (RAHB). This follows from extensive computational analyses of guanine quartets (G(4)) and xanthine quartets (X(4)) based on dispersion-corrected density functional theory (DFT-D). Our investigations cover the situation of quartets in the gas phase, in aqueou...

متن کامل

Interplay Between Lithium Bonding and Halogen Bonding in F3CX•••YLi•••NCCN and F3CX•••NCCN•••LiY Complexes (X = Cl, Br; Y = CN, NC)

MP2 calculations with cc-pVTZ basis set were used to analyze intermolecular interactions in F3CX···YLi···NCCN and F3CX···NCCN···LiY triads (X = Cl, Br; Y = CN, NC) which are connected via halogen and lithium bonds. Those complexes with the role of LiY as halogen acceptor and lithium donor show cooperativity with energy values ranging between -1.97 and -2.92 kJ mol...

متن کامل

Ab Initio Studies on the Interplay between Unconventional B•••X Halogen Bond and Lithium/Hydrogen/Halogen Bond in HB(CO)2•••XCN•••YF (X = Cl, Br; Y = Li, H, Cl) Complexes

In this paper, ab initio calculations were performed on the ternary complex formed by HB(CO)2, XCN (X = Cl, Br) and YF (Y = Li, H, Cl). In these complexes boron act as a non-classical electron donor to form a unconventional halogen bond. The cooperative effect between the B•••X halogen bond and lithium/hydrogen/halogen bond was investigated. The calculated results show that the B•••X and N•••Y ...

متن کامل

The Nature of Halogen Bonds in [N∙∙∙X∙∙∙N]+ Complexes: A Theoretical Study

     The effects of substituents on the symmetry and the nature of halogen bonds in [N∙∙∙X∙∙∙N]+-type systems are presented for the YC5H4N∙∙∙X∙∙∙NC5H5 (Y = NO2, CN, H, CH3, OCH3, OH, NH2, X = Cl, Br, I) complexes. Some structural parameters, energy data and electronic properties were explored with...

متن کامل

Halogen-Bonded Co-Crystals of Aromatic N-oxides: Polydentate Acceptors for Halogen and Hydrogen Bonds

Seventeen new halogen-bonded co-crystals characterized by single crystal X-ray analysis are presented from 8 × 4 combinations using methyl-substituted pyridine N-oxides and 1,ω-diiodoperfluoroalkanes. The N−O group in six of 17 co-crystals is monodentate and 11 have μ-O,O bidentate halogen bond acceptor modes. Remarkably, the N−O group in co-crystals of 3-methyl-, 4-methyland 3,4-dimethylpyridi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 17 3  شماره 

صفحات  -

تاریخ انتشار 2015